

The Evolution of GFR **Estimation: An update as of** December 2021

Tabo Sikaneta, MD FRCPC

Nephrologist, The Scarborough Health Network

What is the Glomerular Filtration Rate (GFR) and why do we care about it?

- GFR is the volume of plasma filtered through the glomeruli per unit time
- The kidneys perform their myriad tasks on this filtrate
- Reflects the total number of functioning glomeruli and is therefore the best way to assess kidney function in health and disease

Glomerular. capillaries

capsule

Stages of Kidney Disease

The GFR has many uses...

- To define CKD (less than 60 ml/min for 3 months)
- To stage CKD (e.g., 59–45, 44–30, 29–15, <15 ml/min)
- To monitor rates of progression of CKD
- To dose adjust medications and make other treatment decisions
- To prognosticate outcomes in patients with CKD
- It is the primary indicator of renal function used in clinical practice guidelines (e.g. the National Kidney Foundation's Kidney Disease Quality Initiative (K/DOQI) clinical practice guidelines)

Stage of Kidney Disease NKDEP Classification

Normal	Healthy kidneys GFR > 90 mL/min per 1.73 m ²
Stage 1	Kidney damage with normal or elevat GFR > 90 mL/min per 1.73 m ²
Stage 2	Kidney damage and mild decrease in GFR of 60 - 89 mL/min per 1.73 m ²
Stage 3 a/b	Moderate decrease in GFR GFR of 30-44 / 45-59 mL/min per 1.7
Stage 4	Severe decrease in GFR GFR 15 - 29 mL/min per 1.73 m ²
Stage 5	Kidney failure - ESRD GFR of <15 mL/min per 1.73 m ²

Institute Lifescie

GFR vs solute clearance

Renal vein

Solute Clearance

- GFR is indirectly measured by the volume of plasma that is cleared of an ideal solute by the kidneys per unit time
- Ideal solutes have a constant rate of appearance in the blood, are freely filtered by the glomerulus, and are neither reabsorbed nor secreted by the tubules
- The only ideal solutes are exogenous and administered in a research setting (e.g., inulin and 1251-iothalamate)
- Creatinine clearance is the most widely used endogenous solute clearance, but is not ideal as creatinine does not have a constant rate of appearance (e.g., reduced in muscle wasting states), and is secreted by the proximal tubule
- Cystatin represents another endogenous solute that is renally-cleared* and which has a more constant rate of appearance

Institute of Kidnev

itescience Technologies.

Cystatin C as a GFR Marker

- Cystatin C is a small 13 kDa protein that is a member of the cysteine proteinase inhibitor family that is produced at a constant rate by all nucleated cells
- Due to its small size & positive charge at physiological pH, it is freely filtered by the glomerulus, and is not secreted but is fully reabsorbed and catabolized in proximal renal tubules
- This means the primary determinate of blood Cystatin C levels is the rate at which it is filtered at the glomerulus making it an excellent GFR marker
- Normal serum Cystatin C values range from 0.6 to 1.0 mg/L

Cystatin C as a GFR Marker

- Unlike creatinine, Cystatin C serum levels are virtually unaffected by age (>1 yr), muscle mass, gender, and race
- A number of very simple formulas have been introduced which can be used to obtain an estimated GFR using Cystatin C
- Multiple studies have found Cystatin C to be more sensitive to actual changes in GFR in the early stages of CKD than creatinine based GFR estimates
- A significant advantage of Cystatin C based formulas, unlike creatinine-based equations, is that Cystatin C based estimated GFR formulas are not biased according to GFR and there is no GFR blind area with Cystatin C

Cystatin C & Stages of CKD

																С	rea B A	tini lind .rea	ne	2 2	
	ļ	g	Цı	t	ha		8														
1.5	1.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.0
4	. v	ı U	6	7	00	9	11	13	16	21	29	32	34	37	41	45	49	55	61	70	08
	Stage 5 End Stage Renal Disease (ESRD)						Stage 4 Stag Severe Mod Decrease Decr					ge 3 Stage 2 erate Mild rease Decrease					e 2 1 ase				

_									
0.9	0.8	0.7	0.6	0.5	Cystatin C mg/L				
93	110	133	167	217	GFR mL/min/1.73m ²				
					© Gentian AS 2006-2009				
	Stage 1								

Normal

GFR

Measured Versus Estimated GFR

Measurements of GFR are:

- Time consuming
- Cumbersome
- Expensive (especially for exogenous solute clearance assays)
- Restricted

be:

- Quick
- Easy
- Affordable Widely available
- Based on serum concentrations of endogenous solutes (such as creatinine and cystatin)

Estimations of GFR are designed to

Challenges with GFR Estimation

- Based on endogenous solutes and their inherent limitations
- Creatinine, which is produced by muscle, varies according to race, sex, and age in GFR-independent ways
- Cystatin, which is produced by all nucleated cells, is increased in high-turnover states, use of corticosteroids, and in hyperthyroidism
- GFR estimation equations should ideally be useful across the spectrum of GFR. (i.e., no inaccuracies or blind spots at any point in this continuum), and across all populations/demographics

Key Developments in the Evolution of GFR Estimation

- Came from studies that derived equations for GFR's that predicted measured GFR's
 - Cockcroft-Gault 1976 (249 males, measured GFR used non-standardized creatinine) MDRD 1999 (840 patients with CKD, measured GFR used exogeneous solute) CKD-EPI creat 2009 (8,254 participants with and without CKD) CKD-EPI cystatin and creat-cystatin 2012 (5,352 participants with and without CKD) CKD-EPI creat, cystatin, creat-cyst 2021 (4,050 participants with and without CKD)

CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; GFR, glomerular filtration rate; MDRD, Modification of Diet in Renal Disease Levy AS, Titan SM, Powe NR, Coresh J, Inker LA : Kidney Disease, Race and GFR estimation; Clin J Am Soc Nephrol 15: 1203-1212, 2020

The Cockcroft-Gault Equation

Calculation of estimated creatinine clearance (ml/min) according to the Cockcroft-Gault equation =

[140 – age (years)] x ideal weight (kg) x 0.85 if female

[serum creatinine (mg/dl)] x 72

The Modification of Diet in Renal Disease (MDRD) Equation

MDRD estimated creatinine clearance (ml/min/1.73m²) =

 $175 \times [\text{serum creatinine (mg/dl)}]^{-1.154} \times [\text{age (years)}]^{-0.203} \times [0.742 \text{ if female}] \times [1.21 \text{ if black}]$

Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461-470. doi:10.7326/0003-4819-130-6-199903160-00002

The CKD-EPI Consortium

"The CKD Epidemiology Collaboration (CKD-EPI) is a research group with major interests in measurement and estimation of GFR (CKD-EPI GFR)"

CKD-EPI estimated creatinine clearance $(ml/min/1.73m^2) =$

 $141 \times min[SCr (mg/dl)/kappa, 1]^{\alpha} \times max[SCr]$ (mg/dl)/K,1]^{-0.209} × 0.993^{Age} × Sex × Race

> For female: Sex=1.018; alpha=-0.329; kappa=0.7 For male: Sex=1; alpha=-0.411; kappa=0.9

CKD-EPI, CKD Epidemiology Collaboration; GFR, glomerular filtration rate

- 1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009 May 5;150(9):604-12. doi: 10.7326/0003-4819-150-9-200905050-00006.
- 2. Inker LA, Eckfeldt J, Levey AS, et al. Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am J Kidney Dis 2011;58:682-4.

CKD-EPI cystatin C equation $(ml/min/1.73m^2) =$

133 x min[Scys/0.8, 1)^{-0.499} x max [Scys/0.8, 1)^{-1.328} $\times 0.996^{Age} \times 0.932$ if female

CKD EPI: Creatinine + Cystatin C Equation (2012)

"Combined creatinine-cystatin C equations perform better than equations" based on either of these markers alone"

CKD-EPI creatinine-cystatin C equation (ml/min/1.73m²) =

 $135 \times min[SCr (mg/dl)/kappa, 1]^{\alpha} \times max[SCr (mg/dl)/\kappa, 1]^{-0.601} \times Min[SCys/0.8, 1]^{-0.375}$ \times max[SCys/0.8, 1]^{-0.711} \times 0.995^{Age} \times 0.969 if female \times 1.08 if Black

> For female: alpha=-0.248; kappa=0.7 For male: Sex=1; alpha=-0.207; kappa=0.09

CKD-EPI, CKD Epidemiology Collaboration; GFR, glomerular filtration rate; Scr, serum creatinine; Scys, serum cystatin C Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C [published correction appears in N Engl J Med. 2012 Aug 16;367(7):681] [published correction appears in N Engl J Med. 2012 Nov 22;367(21):2060]. N Engl J Med. 2012;367(1):20-29. doi:10.1056/NEJMoa1114248

Revised CKD-EPI Creatinine + Cystatin C Equation (2021)

"New eGFR equations that incorporate creatinine and cystatin C but omit race are more accurate and lead to smaller differences between Black participants and non-Black participants than new equations without race with either creatinine or cystatin C alone"

	Gender	Scr (mg/dL)	Scys (mg/L)	Equation (mL/min/1.73 m ²)
	Female	≤0.7	≤0.8	130 × (Scr/0.7) ^{-0.248} × (Scys/0.8) ^{-0.375} × 0.995 ^{age}
			>0.8	130 × (Scr/0.7) ^{-0.248} × (Scys/0.8) ^{-0.711} × 0.995 ^{age}
		>0.7	≤0.8	130 × (Scr/0.7) ^{-0.601} × (Scys/0.8) ^{-0.375} × 0.995 ^{age}
			>0.8	130 × (Scr/0.7) ^{-0.601} × (Scys/0.8) ^{-0.711} × 0.995 ^{age}
I	Male	≤0.9	≤0.8	135 × (Scr/0.9) ^{-0.207} × (Scys/0.8) ^{-0.375} × 0.995 ^{age}
			>0.8	135 × (Scr/0.9) ^{-0.207} × (Scys/0.8) ^{-0.711} × 0.995 ^{age}
		>0.9	≤0.8	135 × (Scr/0.9) ^{-0.601} × (Scys/0.8) ^{-0.375} × 0.995 ^{age}
			>0.8	135 × (Scr/0.9) ^{-0.601} × (Scys/0.8) ^{-0.711} × 0.995 ^{age}

CKD-EPI, CKD Epidemiology Collaboration; GFR, glomerular filtration rate

Inker LA, Eneanya ND, Coresh J, et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N Engl J Med. 2021;385(19):1737-1749. doi:10.1056/NEJMoa2102953

nin/1.73 m²)

- $^{248} \times (\text{Scys/0.8})^{-0.375} \times 0.995^{\text{age}}$
- $^{248} \times (\text{Scys/0.8})^{-0.711} \times 0.995^{\text{age}}$
- $^{501} \times (\text{Scys/0.8})^{-0.375} \times 0.995^{\text{age}}$
- $^{501} \times (Scys/0.8)^{-0.711} \times 0.995^{age}$
- $^{207} \times (\text{Scys/0.8})^{-0.375} \times 0.995^{\text{age}}$
- $^{207} \times (\text{Scys/0.8})^{-0.711} \times 0.995^{\text{age}}$
- $^{501} \times (\text{Scys/0.8})^{-0.375} \times 0.995^{\text{age}}$

Institute of Kidney

Lifescience Technologies

2021

CKD-EPI cystatin CKD-EPI creatinine + cystatin Revised CKD-EPI creatinine + cystatin - race

Remaining Challenges

- Translating the latest findings into clinical practice here in Ontario
- Getting laboratories to incorporate these findings into their reports
- Educating other healthcare providers about these advances in order to streamline referral and management practices

tice here in Ontario Igs into their reports ese advances in order to

